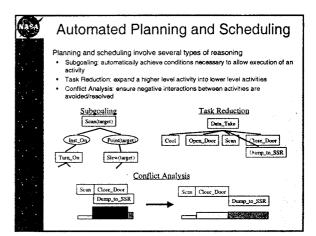


Automated Planning for Interferometer Configuration and Control

Gregg Rabideau Len Reder Steve Chien Andrew Booth

Jet Propulsion Laboratory Artificial Intelligence Group planning.jpl.nasa.gov


ASPEN

- ◆ <u>Automated Scheduling and Planning</u> ENvironment
- + Model-based Al Planner (w/ GUI)
 - each application requires a model of the activities, parameter, constraints, resources, state variables, etc.
 - generic planning algorithms uses model to generate/repair/optimize plans

Al Planning and Scheduling

- + Accepts as input high level goals and initial state
 - goals: science observations, calibrations, etc.
 - · initial state: health, view periods, etc.
- + Produces a plan (i.e. command sequence) that
 - · achieves goals
 - respects the model including operability, resource, and safety constraints (conflict free)
 - maximizes user-specified preferences (optimized)
- + Accepts changes and re-plans

ASPEN Components

- + GUI and Socket Interface
- + Constraint/Quality Modeling Language
- + Constraint/Quality Management Systems
- + Planning/Scheduling Algorithms
 - · Dispatch, Repair, Optimization
- + Output Generation
- + Soft real-time re-planning (CASPER)

Benefits of Automated Planning Technology

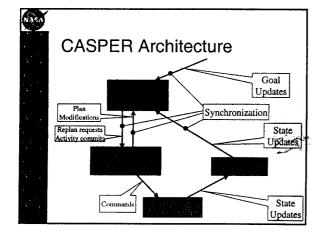
- Reduce mission planning and operations costs
- Improve anomaly response time during operations by reducing replan time (potentially to minutes)
- Enhance science return by increasing efficiency of resource management (via optimization)
- Increases reliability by automatically detecting and resolving conflicts

Examples

- NMP study automated command functions estimated to save
 - \$14M/yr for Magellan class mapping mission
 - . \$30M/yr for Galileo class multi-flyby
- ◆ DATA-CHASER payload on STS-85 (1997)
 - . 80% decrease in planning time
 - 40% increase in science return
- Modified Antarctic Mapping Mission (MAMM) (Fall 2000; compared to AMM-1)
 - 25% decrease in overall mission plan development time (including plan model/algorithm development)
 - · 100% decrease in plan errors

Ground Station Automation

- Automated procedure generation of DSN communication antenna command sequences
- + Deep Space Terminal (DS-T)
 - · series of Mars Global Surveyor (MGS) downlink tracks
 - several 1-day unattended demos performed in April and May 1998
 - 6-day autonomous "lights-out" demo performed in Sept 1998
 - · Performance on-par with operator-controlled station


CASPER

- + Continuous Activity Scheduling, Planning, Execution, and Replanning
- + Embedded Soft Real-time Planning
- Provides planning capabilities needed to respond to a somewhat dynamic, unpredictable environment

CASPER (cont.)

- + Planner always has a current plan
- + Plan is extended as time proceeds
- Changing context (new goals, unexpected state) is propagated through current plan
 - may reveal flaws in current plan
 - violated constraints (conflicts)
 - low quality
 - · these are targets for replanning

Comparison - Batch Planning

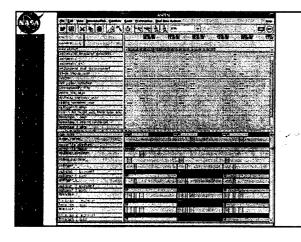
- Time is broken into a set of planning horizons
- ◆ When one is near completion, a planner is invoked with:
 - a predicted state (what world will be like when current plan complete)
 - goals for the future planning horizon (including desired end state)
- → Full plan generated from scratch

Benefits of Continuous Planning

- Planner more responsive to environmental changes/uncertainty
- Planner reduces reliance on model accuracy
- ◆ Fault protection and execution layers have simplified responsibility - planner more responsive
- No hard boundary between planner and exec - shared representation

Keck Model

- Activities science (interferometry, astrometry), telescope operations (find target), interferometer operations (mirror alignment)
- Resources 2 main telescopes, 4 outriggers, mirrors, combiners
- State variables telescope pointing, mirror alignment, health



Keck Model (cont.)

- Constraints non-parallel usage of resources, temporal ordering of activities (find target before alignment before science)
- ◆ Preferences more science, early science, fewer operations, use of main telescopes*

*Possible, but not implemented

Keck Simulator and Interface to CASPER

- Simple simulator generated from the ASPEN model
 - simulates plan execution with some random behavior, e.g. random target loss
- + CASPER interface to Sim also generated to:
 - translate ASPEN activities into Sim commands
 - receive updates from execution (Sim)
- CASPER linked to EPICS sequencer for alignment of one of the mirrors
 - · replaced parts of Sim and interface

Hypothetical Keck Scenario

- + 3-nights, 9 observations, 118 activities
- → During simulation, CASPER monitors time and commits to upcoming activities (i.e., those sent for execution are locked in the plan)
- + Simulator occasionally reports target loss
 - · shows up as a conflict with science
 - repair automatically invoked to re-target (inserts activities to find target and re-align)

Scenario (cont.)

- Mirror fault simulated in beam-train alignment sequencer
 - · repair tries to re-align, but mirror is faulted
 - repair abstracts the science activity and redecomposes it into one that does not use the mirror (i.e. a different telescope with a different beam-train)
 - preferences could specify which telescopes are preferred

Preliminary Results

- ◆ A few seconds to generate initial 3-night observation plan
- Less than a second to a few seconds to repair run-time faults

Summary

- + Increasing automation:
 - ASPEN GUI →
 - ASPEN planning algorithms →
 - · CASPER continuous planning
- + Benefits:
 - decrease in response time
 - · decrease in errors
 - decrease in effort
 - · increase in science return